[12pt]beamer

Splitting the Integers by Sequences

Aviezri S. Fraenkel

Weizmann Institue of Science
Rehovot, Israel

January 31, 2017

Arithmetic Sequences

Arithmetic Sequences

- The arithmetic sequences $\{2 n-1: n \geq 1\},\{2 n: n \geq 1\}$ partition the positive integers $\mathbb{Z}_{\geq 1}$.

Arithmetic Sequences

- The arithmetic sequences $\{2 n-1: n \geq 1\},\{2 n: n \geq 1\}$ partition the positive integers $\mathbb{Z}_{\geq 1}$.
- So do $\{4 n-3: n \geq 1\}$, $\{4 n-1: n \geq 1\},\{2 n: n \geq 1\}$.

Arithmetic Sequences

- The arithmetic sequences $\{2 n-1: n \geq 1\},\{2 n: n \geq 1\}$ partition the positive integers $\mathbb{Z}_{\geq 1}$.
- So do $\{4 n-3: n \geq 1\}$, $\{4 n-1: n \geq 1\},\{2 n: n \geq 1\}$.
- Notice that for both systems, the two largest moduli (2, 2 and $4,4)$ are identical.

Arithmetic Sequences

- The arithmetic sequences $\{2 n-1: n \geq 1\},\{2 n: n \geq 1\}$ partition the positive integers $\mathbb{Z}_{\geq 1}$.
- So do $\{4 n-3: n \geq 1\}$, $\{4 n-1: n \geq 1\},\{2 n: n \geq 1\}$.
- Notice that for both systems, the two largest moduli (2, 2 and 4,4) are identical.
- Davenport, Mirsky, D. Newman, Radó proved, using a slick generating function and complex root of unity proof, that in any partitioning of $\mathbb{Z}_{\geq 1}$ into $m \geq 2$ arithmetic sequences, the two largest moduli are identical.

Theorem Mirsky et al

Theorem

If the integer system $\bigcup\left\{n a_{i}+b_{i}\right\}_{i=1}^{m}$ is complementary, $a_{1} \leq a_{2} \leq \ldots \leq a_{m}$ and $m \geq 2$, then $a_{m-1}=a_{m}$.

Theorem Mirsky et al

Theorem

If the integer system $\bigcup\left\{n a_{i}+b_{i}\right\}_{i=1}^{m}$ is complementary, $a_{1} \leq a_{2} \leq \ldots \leq a_{m}$ and $m \geq 2$, then $a_{m-1}=a_{m}$.

- Proof
- Generating function statement of theorem's hypothesis:

$$
\sum_{i=1}^{m} z^{b_{i}} /\left(1-z^{a_{i}}\right)=z /(1-z)
$$

Theorem Mirsky et al

Theorem

If the integer system $\bigcup\left\{n a_{i}+b_{i}\right\}_{i=1}^{m}$ is complementary, $a_{1} \leq a_{2} \leq \ldots \leq a_{m}$ and $m \geq 2$, then $a_{m-1}=a_{m}$.

- Proof
- Generating function statement of theorem's hypothesis:
$\sum_{i=1}^{m} z^{b_{i}} /\left(1-z^{a_{i}}\right)=z /(1-z)$.
- Let ρ be a primitive a_{m} th root of unity: $\rho^{a_{m}}=1$, and no smaller power of ρ gives 1 .

Theorem Mirsky et al

Theorem

If the integer system $\bigcup\left\{n a_{i}+b_{i}\right\}_{i=1}^{m}$ is complementary, $a_{1} \leq a_{2} \leq \ldots \leq a_{m}$ and $m \geq 2$, then $a_{m-1}=a_{m}$.

- Proof

- Generating function statement of theorem's hypothesis:

$$
\sum_{i=1}^{m} z^{b_{i}} /\left(1-z^{a_{i}}\right)=z /(1-z)
$$

- Let ρ be a primitive a_{m} th root of unity: $\rho^{a_{m}}=1$, and no smaller power of ρ gives 1 .
- Suppose $a_{m-1}<a_{m}$. Let $z \rightarrow \rho$. Then $z^{b_{m}} /\left(1-z^{a_{m}}\right)$ is the only term growing unboundedly. Contradiction.

Theorem Mirsky et al

Theorem

If the integer system $\bigcup\left\{n a_{i}+b_{i}\right\}_{i=1}^{m}$ is complementary, $a_{1} \leq a_{2} \leq \ldots \leq a_{m}$ and $m \geq 2$, then $a_{m-1}=a_{m}$.

- Proof

- Generating function statement of theorem's hypothesis:

$$
\sum_{i=1}^{m} z^{b_{i}} /\left(1-z^{a_{i}}\right)=z /(1-z)
$$

- Let ρ be a primitive a_{m} th root of unity: $\rho^{a_{m}}=1$, and no smaller power of ρ gives 1 .
- Suppose $a_{m-1}<a_{m}$. Let $z \rightarrow \rho$. Then $z^{b_{m}} /\left(1-z^{a_{m}}\right)$ is the only term growing unboundedly. Contradiction.
- ... Erdos ... Berger, Felzenbaum, F. ...independently by Simpson.

Non-integer moduli

Theorem
$\alpha>0, \beta>0$ irrational, $1 / \alpha+1 / \beta=1 \Longrightarrow\{\lfloor n \alpha\rfloor\}_{n \geq 1}$, $\{\lfloor n \beta\rfloor\}_{n \geq 1}$ partition $\mathbb{Z}_{\geq 1}$.

Non-integer moduli

Theorem
$\alpha>0, \beta>0$ irrational, $1 / \alpha+1 / \beta=1 \Longrightarrow\{\lfloor n \alpha\rfloor\}_{n \geq 1}$, $\{\lfloor n \beta\rfloor\}_{n \geq 1}$ partition $\mathbb{Z}_{\geq 1}$.

Non-integer moduli

Theorem
$\alpha>0, \beta>0$ irrational, $1 / \alpha+1 / \beta=1 \Longrightarrow\{\lfloor n \alpha\rfloor\}_{n \geq 1}$, $\{\lfloor n \beta\rfloor\}_{n \geq 1}$ partition $\mathbb{Z}_{\geq 1}$.

- This is an irrational partitioning system with two distinct moduli.

Non-integer moduli

Theorem

$\alpha>0, \beta>0$ irrational, $1 / \alpha+1 / \beta=1 \Longrightarrow\{\lfloor n \alpha\rfloor\}_{n \geq 1}$, $\{\lfloor n \beta\rfloor\}_{n \geq 1}$ partition $\mathbb{Z}_{\geq 1}$.

- This is an irrational partitioning system with two distinct moduli.
- In Feb 1973 I showed that for every $m \geq 3$, the rational system $\left\{\left\lfloor n \alpha_{i}+\beta_{i}\right\rfloor\right\}_{n \geq 1}$ with $\alpha_{i}=\left(2^{m}-1\right) / 2^{m-i}$, $\beta_{i}=-2^{i-1}+1, i=1, \ldots, m$ partitions $\mathbb{Z}_{\geq 1}$.

Non-integer moduli

Theorem

$\alpha>0, \beta>0$ irrational, $1 / \alpha+1 / \beta=1 \Longrightarrow\{\lfloor n \alpha\rfloor\}_{n \geq 1}$, $\{\lfloor n \beta\rfloor\}_{n \geq 1}$ partition $\mathbb{Z}_{\geq 1}$.

- This is an irrational partitioning system with two distinct moduli.
- In Feb 1973 I showed that for every $m \geq 3$, the rational system $\left\{\left\lfloor n \alpha_{i}+\beta_{i}\right\rfloor\right\}_{n \geq 1}$ with $\alpha_{i}=\left(2^{m}-1\right) / 2^{m-i}$, $\beta_{i}=-2^{i-1}+1, i=1, \ldots, m$ partitions $\mathbb{Z}_{\geq 1}$.
- This is a partitioning system with $m \geq 3$ distinct moduli.

Non-integer moduli

Theorem

$\alpha>0, \beta>0$ irrational, $1 / \alpha+1 / \beta=1 \Longrightarrow\{\lfloor n \alpha\rfloor\}_{n \geq 1}$, $\{\lfloor n \beta\rfloor\}_{n \geq 1}$ partition $\mathbb{Z}_{\geq 1}$.

- This is an irrational partitioning system with two distinct moduli.
- In Feb 1973 I showed that for every $m \geq 3$, the rational system $\left\{\left\lfloor n \alpha_{i}+\beta_{i}\right\rfloor\right\}_{n \geq 1}$ with $\alpha_{i}=\left(2^{m}-1\right) / 2^{m-i}$, $\beta_{i}=-2^{i-1}+1, i=1, \ldots, m$ partitions $\mathbb{Z}_{\geq 1}$.
- This is a partitioning system with $m \geq 3$ distinct moduli.
- Example: $m=3$.

n	$\lfloor 7 n / 4\rfloor$	$\lfloor 7 n / 2\rfloor-1$	$7 n-3$
1	1	2	4
2	3	6	
3	5		
4	7		

Conjecture

Conjecture

- I further conjectured there:

Conjecture

- I further conjectured there:
- Every partition of $\mathbb{Z}_{\geq 1}$ into $m \geq 3$ sets $\left\{\left\lfloor n \alpha_{i}+\beta_{i}\right\rfloor\right\}_{n \in \mathbb{Z}_{\geq 1}}$ with α_{i}, β_{i} real, $\alpha_{k} \neq \alpha_{\ell}$ for all $k \neq \ell$ satisfies $\alpha_{i}=\left(2^{m}-1\right) / 2^{m-i}, i=1, \ldots, m$.

Conjecture

- I further conjectured there:
- Every partition of $\mathbb{Z}_{\geq 1}$ into $m \geq 3$ sets $\left\{\left\lfloor n \alpha_{i}+\beta_{i}\right\rfloor\right\}_{n \in \mathbb{Z} \geq 1}$ with α_{i}, β_{i} real, $\alpha_{k} \neq \alpha_{\ell}$ for all $k \neq \ell$ satisfies $\alpha_{i}=\left(2^{m}-1\right) / 2^{m-i}, i=1, \ldots, m$.
- In other words, the only partitioning system by sequences into $m \geq 3$ sets with distinct moduli is the indicated rational system!

Conjecture

- I further conjectured there:
- Every partition of $\mathbb{Z}_{\geq 1}$ into $m \geq 3$ sets $\left\{\left\lfloor n \alpha_{i}+\beta_{i}\right\rfloor\right\}_{n \in \mathbb{Z} \geq 1}$ with α_{i}, β_{i} real, $\alpha_{k} \neq \alpha_{\ell}$ for all $k \neq \ell$ satisfies $\alpha_{i}=\left(2^{m}-1\right) / 2^{m-i}, i=1, \ldots, m$.
- In other words, the only partitioning system by sequences into $m \geq 3$ sets with distinct moduli is the indicated rational system!
- Google 'F Conjecture'.

Back to the irrational case

Back to the irrational case

- As we saw above, $\alpha>0, \beta>0$ irrational, $1 / \alpha+1 / \beta=1$ $\Longrightarrow\{\lfloor n \alpha\rfloor\}_{n \geq 1},\{\lfloor n \beta\rfloor\}_{n \geq 1}$ partition $\mathbb{Z}_{\geq 1}$.

Back to the irrational case

- As we saw above, $\alpha>0, \beta>0$ irrational, $1 / \alpha+1 / \beta=1$ $\Longrightarrow\{\lfloor n \alpha\rfloor\}_{n \geq 1},\{\lfloor n \beta\rfloor\}_{n \geq 1}$ partition $\mathbb{Z}_{\geq 1}$.
- Ron Graham noticed that in any such system, we can also split the multiplying n into arithmetic sequences to get a multiple-set partitioning.

Back to the irrational case

- As we saw above, $\alpha>0, \beta>0$ irrational, $1 / \alpha+1 / \beta=1$ $\Longrightarrow\{\lfloor n \alpha\rfloor\}_{n \geq 1},\{\lfloor n \beta\rfloor\}_{n \geq 1}$ partition $\mathbb{Z}_{\geq 1}$.
- Ron Graham noticed that in any such system, we can also split the multiplying n into arithmetic sequences to get a multiple-set partitioning.
- Example: $\{\lfloor(2 n) \alpha\rfloor\}_{n \geq 1},\{\lfloor(2 n-1) \alpha\rfloor\}_{n \geq 1},\{\lfloor n \beta\rfloor\}_{n \geq 1}$ also partition $\mathbb{Z}_{\geq 1}$.

Back to the irrational case

- As we saw above, $\alpha>0, \beta>0$ irrational, $1 / \alpha+1 / \beta=1$ $\Longrightarrow\{\lfloor n \alpha\rfloor\}_{n \geq 1},\{\lfloor n \beta\rfloor\}_{n \geq 1}$ partition $\mathbb{Z}_{\geq 1}$.
- Ron Graham noticed that in any such system, we can also split the multiplying n into arithmetic sequences to get a multiple-set partitioning.
- Example: $\{\lfloor(2 n) \alpha\rfloor\}_{n \geq 1},\{\lfloor(2 n-1) \alpha\rfloor\}_{n \geq 1},\{\lfloor n \beta\rfloor\}_{n \geq 1}$ also partition $\mathbb{Z}_{\geq 1}$.
- This can be re-written in the form: $\{\lfloor n(2 \alpha)\rfloor\}_{n \geq 1}$, $\{\lfloor n(2 \alpha)-\alpha\rfloor\}_{n \geq 1},\{\lfloor n \beta\rfloor\}_{n \geq 1}$. So here we have again a splitting with two identical moduli: 2α.

Back to the irrational case

- As we saw above, $\alpha>0, \beta>0$ irrational, $1 / \alpha+1 / \beta=1$ $\Longrightarrow\{\lfloor n \alpha\rfloor\}_{n \geq 1},\{\lfloor n \beta\rfloor\}_{n \geq 1}$ partition $\mathbb{Z}_{\geq 1}$.
- Ron Graham noticed that in any such system, we can also split the multiplying n into arithmetic sequences to get a multiple-set partitioning.
- Example: $\{\lfloor(2 n) \alpha\rfloor\}_{n \geq 1},\{\lfloor(2 n-1) \alpha\rfloor\}_{n \geq 1},\{\lfloor n \beta\rfloor\}_{n \geq 1}$ also partition $\mathbb{Z}_{\geq 1}$.
- This can be re-written in the form: $\{\lfloor n(2 \alpha)\rfloor\}_{n \geq 1}$, $\{\lfloor n(2 \alpha)-\alpha\rfloor\}_{n \geq 1},\{\lfloor n \beta\rfloor\}_{n \geq 1}$. So here we have again a splitting with two identical moduli: 2α.
- Of course also the multiplier n of β can be split into arbitrary arithmetic sequences.

Back to the irrational case

- As we saw above, $\alpha>0, \beta>0$ irrational, $1 / \alpha+1 / \beta=1$ $\Longrightarrow\{\lfloor n \alpha\rfloor\}_{n \geq 1},\{\lfloor n \beta\rfloor\}_{n \geq 1}$ partition $\mathbb{Z}_{\geq 1}$.
- Ron Graham noticed that in any such system, we can also split the multiplying n into arithmetic sequences to get a multiple-set partitioning.
- Example: $\{\lfloor(2 n) \alpha\rfloor\}_{n \geq 1},\{\lfloor(2 n-1) \alpha\rfloor\}_{n \geq 1},\{\lfloor n \beta\rfloor\}_{n \geq 1}$ also partition $\mathbb{Z}_{\geq 1}$.
- This can be re-written in the form: $\{\lfloor n(2 \alpha)\rfloor\}_{n \geq 1}$, $\{\lfloor n(2 \alpha)-\alpha\rfloor\}_{n \geq 1},\{\lfloor n \beta\rfloor\}_{n \geq 1}$. So here we have again a splitting with two identical moduli: 2α.
- Of course also the multiplier n of β can be split into arbitrary arithmetic sequences.
- It follows from the result on partitioning with arithmetic sequences, that in any such irrational system with $m \geq 3$, two moduli (not necessarily the largest ones) are identical.
- Ron Graham then proceeded to prove that these types of irrational partitioning systems are the only ones that can exist!
- Ron Graham then proceeded to prove that these types of irrational partitioning systems are the only ones that can exist!
- Interim conclusion: The F-Conjecture is proved for the integers, proved for the irrationals, but is wide open for the rationals.
- Ron Graham then proceeded to prove that these types of irrational partitioning systems are the only ones that can exist!
- Interim conclusion: The F-Conjecture is proved for the integers, proved for the irrationals, but is wide open for the rationals.
- I find this to be the most tantalizing and fascinating aspect of the F-conjecture.

Other advances on the conjecture

Other advances on the conjecture

- Some advances made in my initial paper (1973), in papers by Simpson, in papers by Morikawa.

Other advances on the conjecture

- Some advances made in my initial paper (1973), in papers by Simpson, in papers by Morikawa.
- The F-Conjecture was proved by Simpson if the smallest modulus is at most $3 / 2$, by Morikawa for $m=3$ and, under some condition, for $m=4$. Proofs in terms of balanced sequences have been given for $m=3$ by Tijdeman and for $m=4$ by Altman, Gaujal and Hordijk (unconditional). Later it was proved by Tijdeman for $m=5$ and 6 , by Barát and Varjú for $m=7$.

Other advances on the conjecture

- Some advances made in my initial paper (1973), in papers by Simpson, in papers by Morikawa.
- The F-Conjecture was proved by Simpson if the smallest modulus is at most $3 / 2$, by Morikawa for $m=3$ and, under some condition, for $m=4$. Proofs in terms of balanced sequences have been given for $m=3$ by Tijdeman and for $m=4$ by Altman, Gaujal and Hordijk (unconditional). Later it was proved by Tijdeman for $m=5$ and 6 , by Barát and Varjú for $m=7$.
- Morikawa gave necessary and sufficient conditions for two rational sequences to be disjoint. Simpson simplified his difficult proof and dubbed it 'Japanese Remainder Theorem' in honor of Morikawa.

An application: 'Just-In-Time' systems

An application: 'Just-In-Time' systems

- 'Just-In-Time' systems originated at Toyota automotive, but have by now become standard at any large-scale corporation.

An application: 'Just-In-Time' systems

- 'Just-In-Time' systems originated at Toyota automotive, but have by now become standard at any large-scale corporation.
- Toyota noticed that they spend a huge amount of resources in maintaining inventories of automotive parts, some of which become obsolete even before being called into use.

An application: 'Just-In-Time' systems

- 'Just-In-Time' systems originated at Toyota automotive, but have by now become standard at any large-scale corporation.
- Toyota noticed that they spend a huge amount of resources in maintaining inventories of automotive parts, some of which become obsolete even before being called into use.
- They sought methods to guarantee that parts needed for manufacturing arrive just in time!

An application: 'Just-In-Time' systems

- 'Just-In-Time' systems originated at Toyota automotive, but have by now become standard at any large-scale corporation.
- Toyota noticed that they spend a huge amount of resources in maintaining inventories of automotive parts, some of which become obsolete even before being called into use.
- They sought methods to guarantee that parts needed for manufacturing arrive just in time!
- I think Tijdeman was the first to connect the F-Conjecture (partitioning numbers) with modern 'Just-In-Time' systems (partitioning time).

Academic 'Just-In-Time' research; Games

Academic 'Just-In-Time' research; Games

- Kubiak; Kubiak and Sethi used 'Just-In-Time' methods to shed new light on the F-Conjecture.

Academic 'Just-In-Time' research; Games

- Kubiak; Kubiak and Sethi used 'Just-In-Time' methods to shed new light on the F-Conjecture.
- So did Steiner, Brauner and Crama.

Academic 'Just-In-Time' research; Games

- Kubiak; Kubiak and Sethi used 'Just-In-Time' methods to shed new light on the F-Conjecture.
- So did Steiner, Brauner and Crama.
- I was once in Liège at a conference organized by Michel Rigo on combinatorics on words, when Crama and Brauner intercepted me to listen to them re F-Conjecture and 'Just-In-Time' systems.

Academic 'Just-In-Time' research; Games

- Kubiak; Kubiak and Sethi used 'Just-In-Time' methods to shed new light on the F-Conjecture.
- So did Steiner, Brauner and Crama.
- I was once in Liège at a conference organized by Michel Rigo on combinatorics on words, when Crama and Brauner intercepted me to listen to them re F-Conjecture and 'Just-In-Time' systems.
- The conjecture also induced the mouse game, rat game, fat rat game with 2, 3, 4 piles respectively, whose P-positions are the cases $m=2,3,4$ of the conjecture respectively.

Academic 'Just-In-Time' research; Games

- Kubiak; Kubiak and Sethi used 'Just-In-Time' methods to shed new light on the F-Conjecture.
- So did Steiner, Brauner and Crama.
- I was once in Liège at a conference organized by Michel Rigo on combinatorics on words, when Crama and Brauner intercepted me to listen to them re F-Conjecture and 'Just-In-Time' systems.
- The conjecture also induced the mouse game, rat game, fat rat game with 2, 3, 4 piles respectively, whose P-positions are the cases $m=2,3,4$ of the conjecture respectively.
- For 2,3 we could formulate game rules, but for $m=4$ no game rules were found.

After 44 years, why hasn't the F-Conjecture been settled?

After 44 years, why hasn't the F-Conjecture been settled?

- In the Math Dept, Univ of Adelaide, Southern Australia, there once formed a research group that received a research grant to settle the F-Conjecture.

After 44 years, why hasn't the F-Conjecture been settled?

- In the Math Dept, Univ of Adelaide, Southern Australia, there once formed a research group that received a research grant to settle the F-Conjecture.
- They had a budget for inviting one foreign scientist, so, for some unexplained reason, they chose me.

After 44 years, why hasn't the F-Conjecture been settled?

- In the Math Dept, Univ of Adelaide, Southern Australia, there once formed a research group that received a research grant to settle the F-Conjecture.
- They had a budget for inviting one foreign scientist, so, for some unexplained reason, they chose me.
- We did not manage to settle the conjecture, but worked jointly fruitfully on related problems, especially with Jamie Simpson.

After 44 years, why hasn't the F-Conjecture been settled?

- In the Math Dept, Univ of Adelaide, Southern Australia, there once formed a research group that received a research grant to settle the F-Conjecture.
- They had a budget for inviting one foreign scientist, so, for some unexplained reason, they chose me.
- We did not manage to settle the conjecture, but worked jointly fruitfully on related problems, especially with Jamie Simpson.
- The group then got an extension of their grant and they again invited me, with the same type of results.

After 44 years, why hasn't the F-Conjecture been settled?

- In the Math Dept, Univ of Adelaide, Southern Australia, there once formed a research group that received a research grant to settle the F-Conjecture.
- They had a budget for inviting one foreign scientist, so, for some unexplained reason, they chose me.
- We did not manage to settle the conjecture, but worked jointly fruitfully on related problems, especially with Jamie Simpson.
- The group then got an extension of their grant and they again invited me, with the same type of results.
- After I returned home from my second Australian trip, my late colleague Prof. Joe Gillis (of Blechley Park fame) told me:

After 44 years, why hasn't the F-Conjecture been settled?

- In the Math Dept, Univ of Adelaide, Southern Australia, there once formed a research group that received a research grant to settle the F-Conjecture.
- They had a budget for inviting one foreign scientist, so, for some unexplained reason, they chose me.
- We did not manage to settle the conjecture, but worked jointly fruitfully on related problems, especially with Jamie Simpson.
- The group then got an extension of their grant and they again invited me, with the same type of results.
- After I returned home from my second Australian trip, my late colleague Prof. Joe Gillis (of Blechley Park fame) told me:
- "Aviezri, don't try too hard to prove your conjecture, otherwise you won't be invited again to Australia".

After 44 years, why hasn't the F-Conjecture been settled?

- In the Math Dept, Univ of Adelaide, Southern Australia, there once formed a research group that received a research grant to settle the F-Conjecture.
- They had a budget for inviting one foreign scientist, so, for some unexplained reason, they chose me.
- We did not manage to settle the conjecture, but worked jointly fruitfully on related problems, especially with Jamie Simpson.
- The group then got an extension of their grant and they again invited me, with the same type of results.
- After I returned home from my second Australian trip, my late colleague Prof. Joe Gillis (of Blechley Park fame) told me:
- "Aviezri, don't try too hard to prove your conjecture, otherwise you won't be invited again to Australia".
- Thank You Very Much

