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Arithmetic Sequences

The arithmetic sequences {2n − 1 : n ≥ 1}, {2n : n ≥ 1}
partition the positive integers Z≥1.

So do {4n − 3 : n ≥ 1}, {4n − 1 : n ≥ 1}, {2n : n ≥ 1}.
Notice that for both systems, the two largest moduli (2, 2 and
4, 4) are identical.

Davenport, Mirsky, D. Newman, Radó proved, using a slick
generating function and complex root of unity proof, that in
any partitioning of Z≥1 into m ≥ 2 arithmetic sequences, the
two largest moduli are identical.
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Theorem Mirsky et al

Theorem

If the integer system
⋃
{nai + bi}mi=1 is complementary,

a1 ≤ a2 ≤ . . . ≤ am and m ≥ 2, then am−1 = am.

Proof

Generating function statement of theorem’s hypothesis:∑m
i=1 z

bi/(1− zai ) = z/(1− z).

Let ρ be a primitive amth root of unity: ρam = 1, and no
smaller power of ρ gives 1.

Suppose am−1 < am. Let z → ρ. Then zbm/(1− zam) is the
only term growing unboundedly. Contradiction.

... Erdos ... Berger, Felzenbaum, F. ...independently by
Simpson.
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Non-integer moduli

Theorem

α > 0, β > 0 irrational, 1/α + 1/β = 1 =⇒ {bnαc}n≥1,
{bnβc}n≥1 partition Z≥1.

This is an irrational partitioning system with two distinct
moduli.
In Feb 1973 I showed that for every m ≥ 3, the rational
system {bnαi + βic}n≥1 with αi = (2m − 1)/2m−i ,
βi = −2i−1 + 1, i = 1, . . . ,m partitions Z≥1.
This is a partitioning system with m ≥ 3 distinct moduli.
Example: m = 3.

n b7n/4c b7n/2c − 1 7n − 3

1 1 2 4
2 3 6
3 5
4 7
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Conjecture

I further conjectured there:

Every partition of Z≥1 into m ≥ 3 sets {bnαi + βic}n∈Z≥1

with αi , βi real, αk 6= α` for all k 6= ` satisfies
αi = (2m − 1)/2m−i , i = 1, . . . ,m.

In other words, the only partitioning system by sequences into
m ≥ 3 sets with distinct moduli is the indicated rational
system!

Google ’F Conjecture’.
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Back to the irrational case

As we saw above, α > 0, β > 0 irrational, 1/α + 1/β = 1
=⇒ {bnαc}n≥1, {bnβc}n≥1 partition Z≥1.

Ron Graham noticed that in any such system, we can also
split the multiplying n into arithmetic sequences to get a
multiple-set partitioning.

Example: {b(2n)αc}n≥1, {b(2n − 1)αc}n≥1, {bnβc}n≥1 also
partition Z≥1.

This can be re-written in the form: {bn(2α)c}n≥1,
{bn(2α)− αc}n≥1, {bnβc}n≥1. So here we have again a
splitting with two identical moduli: 2α.

Of course also the multiplier n of β can be split into arbitrary
arithmetic sequences.

It follows from the result on partitioning with arithmetic
sequences, that in any such irrational system with m ≥ 3, two
moduli (not necessarily the largest ones) are identical.
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The most far-reaching advance on the F-Conjecture to date

Ron Graham then proceeded to prove that these types of
irrational partitioning systems are the only ones that can exist!

Interim conclusion: The F-Conjecture is proved for the
integers, proved for the irrationals,

but is wide open for the rationals.

I find this to be the most tantalizing and fascinating aspect of
the F-conjecture.
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Other advances on the conjecture

Some advances made in my initial paper (1973), in papers by
Simpson, in papers by Morikawa.

The F-Conjecture was proved by Simpson if the smallest
modulus is at most 3/2, by Morikawa for m = 3 and, under
some condition, for m = 4. Proofs in terms of balanced
sequences have been given for m = 3 by Tijdeman and for
m = 4 by Altman, Gaujal and Hordijk (unconditional). Later
it was proved by Tijdeman for m = 5 and 6, by Barát and
Varjú for m = 7.

Morikawa gave necessary and sufficient conditions for two
rational sequences to be disjoint. Simpson simplified his
difficult proof and dubbed it ’Japanese Remainder Theorem’
in honor of Morikawa.
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An application: ’Just-In-Time’ systems

’Just-In-Time’ systems originated at Toyota automotive, but
have by now become standard at any large-scale corporation.

Toyota noticed that they spend a huge amount of resources in
maintaining inventories of automotive parts, some of which
become obsolete even before being called into use.

They sought methods to guarantee that parts needed for
manufacturing arrive just in time!

I think Tijdeman was the first to connect the F-Conjecture
(partitioning numbers) with modern ’Just-In-Time’ systems
(partitioning time).
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Academic ’Just-In-Time’ research; Games

Kubiak; Kubiak and Sethi used ’Just-In-Time’ methods to
shed new light on the F-Conjecture.

So did Steiner, Brauner and Crama.

I was once in Liège at a conference organized by Michel Rigo
on combinatorics on words, when Crama and Brauner
intercepted me to listen to them re F-Conjecture and
’Just-In-Time’ systems.

The conjecture also induced the mouse game, rat game, fat
rat game with 2, 3, 4 piles respectively, whose P-positions are
the cases m = 2, 3, 4 of the conjecture respectively.

For 2, 3 we could formulate game rules, but for m = 4 no
game rules were found.

10 / 11



Academic ’Just-In-Time’ research; Games

Kubiak; Kubiak and Sethi used ’Just-In-Time’ methods to
shed new light on the F-Conjecture.

So did Steiner, Brauner and Crama.
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After 44 years, why hasn’t the F-Conjecture been settled?

In the Math Dept, Univ of Adelaide, Southern Australia, there
once formed a research group that received a research grant
to settle the F-Conjecture.

They had a budget for inviting one foreign scientist, so, for
some unexplained reason, they chose me.

We did not manage to settle the conjecture, but worked jointly
fruitfully on related problems, especially with Jamie Simpson.

The group then got an extension of their grant and they again
invited me, with the same type of results.

After I returned home from my second Australian trip, my late
colleague Prof. Joe Gillis (of Blechley Park fame) told me:

”Aviezri, don’t try too hard to prove your conjecture,
otherwise you won’t be invited again to Australia”.

Thank You Very Much
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