## Fault-free tilings of rectangles by dominos

Thane Plambeck

## A tiling of an $8 \times 8$ chessboard by 32 dominos



This tiling has two fault-lines.

## The two fault lines



The two fault-lines in red.

## A fault-free tiling of an $8 \times 8$ chessboard by dominos



Every fault-line is blocked by a domino.
Question: Is there a fault-free tiling of a 6x6 rectangle?

## A single fault-line of a $6 \times 6$ rectangle



Claim: If a $6 \times 6$ fault-free tiling exists, every line is blocked by at least two dominos

## Counting dominos in a putative $6 \times 6$ fault-free tiling



- So...there are ten fault lines to be blocked in a 6x6...
- Each must be blocked by at least two dominos...
- So the tiling has at least twenty dominos.


## General solution (Ron Graham, 1981)

A rectangle with integer sides $p$ and $q$ admits a fault-free tiling by $a \times b$ tiles (where $a$ and $b$ are relatively prime integers) if and only if the following conditions are satisfied:
(1) Each of $a$ and $b$ divides one of $p$ and $q$.
(2) Both the Diophantine equations $a x+b y=p$ and $a x+b y=q$ have distinct solutons in positive integers.
(3) If $a=1$ and $b=2$, then $p$ and $q$ are not both equal to 6 .

For the proof, see Graham's paper in The Mathematical Gardner, edited by David A Klarner (1981).

